Chilled Acetone with IPA and Naphtha

From DMT-Nexus Wiki
Revision as of 13:29, 22 October 2021 by Loveall (Talk | contribs)

Jump to: navigation, search

Introduction ๐Ÿ™

This technique (TEK) focuses on minimizing goo and maximizing DMT crystals.

Analyzed goo by benzyme shows DMT bonded to itself [1] (see Fig. 1). Disrupting these bonds (using a pressure cooker and vitamin C) transforms DMT goo into crystals.

Thanks to Northerner for sharing his excellent pressure cooking experimental result[2], to benzyme for showing MS evidence of DMT bonding to itself, and to Jees, downwardsfromzero, IridiumAndLace, and Loveall for their contributions to this process in the forum[3].

Dmt copy 800x364.png
Fig. 1: Mass spectrum of DMT goo. Peaks in multiples of 188m/z unmask the nature of goo as DMT aggregation.

Safety โ›‘๏ธ

Review NaOH[4] and naphtha [5] safety information. Verify solvent MSDS purity, plastic compatibility, and clean evaporation.

Never have solvents near an open flame.

Following this advice does not guarantee safety. It is up to each adult individual to make their own decision.



  • 2000ml of water
  • 50g of mimosa hostilis root bark
  • 25g ascorbic acid (vitamin C)
  • ~250ml naphtha
  • 25g of NaOH


  • Quart and pint jars
  • Scale
  • Pressure cooker
  • Pipette
  • Freezer
  • Fan
  • Scraping tool

Process Overview ๐Ÿ‘€

  • Pressure cook root bark
  • Add vitamin C at 160F
  • Add naphtha and then basify
  • Pull, freeze precipitate, and collect

Detailed Process ๐Ÿ“œ

Pressure Cook ๐Ÿ”ฅ๐Ÿ’จ

Pressure cook bark with water for 4 hours. Reduce volume to <800ml and transfer everything to a quart jar (do not filter). Rinse pot once with a small amount of water and add the wash to the jar (see Fig. 2).

IMG 20211020 070456294 copy 800x801.jpg
Fig. 2: Pressure cooked bark in quart jars.

Vitamin C Treatment ๐ŸŠ

Stir in vitamin C when jar reaches 160F. Wrap in a towel to retain warmth and rest overnight.

Vitamin C disrupts weak aromatic ring pi-pi bonds between DMT molecules, minimizing goo and maximizing crystals.

Pull ๐Ÿ‘ฉโ€๐Ÿ”ฌ

Shake in ~85ml of naphtha (almost completely filling the jar). Add lye and shake vigorously for a few minutes. Solution will warm up slightly as lye dissolves and will quickly go from red, to milky, to dark red.

Rest solution until naphtha layer separates (~15 minutes, see Fig. 3). If separation is not complete after 30 minutes, mix in another 5g of lye and try again.

Move naphtha into a pint jar with a pipette It is ok if a few drops of watery extract or bark particles come through (they will be decanted in the next section).

Add another ~85ml of naphtha to the quart jar. Shake for a few minutes, rest until layers separate, and pipette naphtha into the pint jar. Perform this step one more time (total of 3 pulls, including the first one).

Ideally, all three pulls are done within an hour while the quart jar is slightly warm from the lye dissolving in water.

IMG 20211020 090639578 copy 600x1122 copy 427x800.jpg
Fig. 3: Settled naphtha pull ready to be pipetted.

Crystalize โœจ

Carefully decant naphtha pulls to a new fresh pint jar. Do not allow any watery extract or particles to come through.

Place decanted naphtha in freezer where naphtha will cloud and crystals will form*. Rest in freezer until cloudiness clears (at least 24 hours).

Decant naphtha off crystals, and immediately dry with the help of a fan. Once dry, scrape up off-white xtals. This is the final product. Yields are typically 1 to 3%.

*If new naphtha was used, one option is to evaporate the solvent until slightly cloudy with the help of a fan in a well ventilated area. A better option is to skip the solvent evaporation. Yield will be lower by ~500mg if using new naphtha, but it will be available for reuse as a one-time "investment" for the next extraction. Subsequently, used naphtha does not need to be evaporated before freezing to get the full yield since it already comes preloaded with a DMT concentration that is saturated at the freezer temperature.

Reclaim Solvent ๐Ÿ’š

Reusing solvents is encouraged[6] at the DMT nexus.

Simply reuse freeze precipitated naphtha as-is. Re-used naphtha is saturated with DMT at freezer the temperature (~2mg/ml) and pre-freezer evaporation is not needed. Easy ๐Ÿ˜Š

Frequently Asked Questions โ“

Q: That's a lot of hypothesis you got down in the appendix. Have any experimental evidence consistent with them?

A: Yes. Benzyme's MS, together with polymerization and de-polymerization experiments. As far as we know experiments are consistent with the hypotheses listed. The community is welcome to update this Wiki entry as more evidence arises, especially if any of the hypotheses are disproved (thank you).

Q: What's so special about Vitamin C?

A: See the development notes in appendix below.

Q: Why are there only 3 pulls without a warm water bath or salting out ionic strength? Usually ~5 warm (40-50C) + high ionic strength pulls (~6% NaCl) are needed.

A: DMT monomer is highly soluble in naphtha and has an excellent partition coefficient. By converting natural DMT to this form, and keeping alkaline conditions gentle to avoid polymerization, the pulls are simpler and very efficient. No added heat or ionic strength is necessary.

Q: What is the difference between DMT polymers, oligomers, aggregates, and aromatic pi-pi stacking?

A: None, all names are equivalent and refer to the same thing: weakly bonded groups of DMT molecules that form goo instead of crystals.

Appendix: Development Notes ๐Ÿ”ฌ

Hypotheses ๐Ÿค”

This TEK hypothesizes that:

  • Not all of the DMT is in the plant in monomer form, some of it is in macro-molecule form (also called polymer, oligomer, or goo)
  • In addition to natural DMT polymer, even more polymer can form during the basing step under high alkaline, high ionic strength, and high DMT concentration conditions
  • Pressure cooker treatment of the bark, together with a separate warm vitamin C step is effective at breaking down any natural DMT polymer to the monomer form
  • Once natural DMT polymer is broken down, gentle alkaline conditions keep it from forming again
  • DMT monomer properties compared to DMT polymer:
    • Easier to dissolve in naphtha (better partition coefficient)
    • Barely clouds during naphtha evaporation
    • Slowly crashes during freeze precipitation as white crystals. In contrast, DMT polymer precipitates sooner as yellow/orange/red semisolid goo
    • Easier to handle and dose precisely
    • Low and consistent vaporization temperature, ideal for newer electronic vaporization devices with precisely tuned temperature settings
    • Visibly unique upon crystalization, eliminating questions around plant oil contaminants
    • May be easier to complex with HPBCD for sublingual administration
    • It is unknown if it has better bioavailability for oral or rectal administration. In principle, stomach acid should be able to break down DMT polymer, so perhaps there is no difference for oral administration
    • There is no expected benefit for torch vaporization by an experienced user since the strong heat produced manually can easily vaporize everything. However, the process window between vaporizing and burning the DMT is larger for the monomer which may benefit the inexperienced user

Strategy โ™Ÿ๏ธ

The strategy of this TEK is to break down both DMT aggregates and plant material, while minimizing DMT re-aggregation during the basing step.

Agressive alkaline concentration conditions are avoided. While these type of processes can break down plant material, their downside is that they don't break down natural DMT aggregates and can even increase the degree of polymerization.

Fortunately, DMT aggregates can break down in acidic conditions. Therefore, to simultaneously break down DMT aggregates and plant material, a long acidic pressure cooking step is used (described before by for example Northener). Vitamin C is used to complete de-aggregation due to its good experimental performance and some literature references referring to it's ability to disrupt pi-pi bonds[7], but other acids could also work. Subsequently, relatively gentle ionic strength (no added salt), gentle alkaline pH (no excess lye beyond emulsion breakdown), and low DMT concentration (<0.5%) conditions are used to minimize any DMT re-polymerization. Naphtha is introduced before basing to minimize the time bulk DMT spends in alkaline water.

Vitamin C ๐ŸŠ

Experimentally, Vitamin C produced better results compared to acetic and citric acids. Vitamin C is biologically active as a mild antioxidant and reducing agent and can pass through cell membranes.

Vitamin C begins to degrade at 158F. The activity of vitamin C decreases with temperature, so it is added when the extract is still hot yet below this degradation temperature.

A possible specific mechanism of action is that as a strong electron donor, vitamin C disrupts parallel displaced and sandwich aromatic ring pi-bond stacking conformations[8].

Other acids may also work, and the kitchen alchemist is encouraged to report on any new experimental results (both positive and negative).

Cloudiness ๐ŸŒซ๏ธ

DMT monomer does not readily form clouds in naphtha compared to other extractions that do not minimize polymer. In this TEK clouds form later in the freezer or evaporation process and are not as opaque. Late cloud formation is a good sign and not a cause for concern. Monomer crystals take longer to grow in the freezer, so give them extra time.

References ๐Ÿ—๏ธ

  1. โ†‘ Polymer MS evidence[1]
  2. โ†‘ Double PC bark abuse[2]
  3. โ†‘ Minimum Polymer[3]
  4. โ†‘ NaOH safety[4]
  5. โ†‘ Naphtha safety[5]
  6. โ†‘ On reusing non polar solvent[6]
  7. โ†‘ Uric acid de-aggregation by vitamin C[7]
  8. โ†‘ Pi-bond aromatic stacking[8]