Amor fati's Nontoxic Approach to Spice Extraction

From DMT-Nexus Wiki
Revision as of 10:09, 27 November 2009 by Amor fati (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Note error.png Note: This page tracks the development of amor_fati's Nontoxic Approach to the Extraction of DMT[1]. The content is to remain accurate as such.
Note error.png Note: This tek is under development -- its effectiveness is yet undetermined.


The process of DMT extraction has always been a relatively simple and forgiving process and can be approached with a wide variety of methods and techniques for varying degrees of success and quality of product. Most of the more common time-tested techniques involve processes and materials resembling the production of other less savory substances, and often require large quantities of time, materials, strain, and space on the part of the operator. Perhaps the most concerning quality common to these techniques is the toxicity and other hazards inherent to the materials in use. However, less toxic and even completely nontoxic approaches have been in development for some time, now, and hope to usher in a new era of wholesome, food-grade extraction of psychedelic substances.

This approach hopes to establish a thorough and reliable nontoxic method of extraction to yield results comparable to those of its less wholesome ancestors.


Materials Required Checklist.png
Source Material:
Solvents:
Reagents/Desiccants:
Equipment:
  • A simple blender with a blade assembly to fit a regular-mouth jar
  • 2 regular-mouth quart mason jars
  • 1 32oz HDPE bottle
  • Cotton balls
  • Cotton cloth (flour sacks)
  • Suggested Equipment:
    • Food dehydrator
    • Separatory device (separatory funnel, or a glass gravy separator)
    • Evaporation dish
    • Small container for preparing FASW (i.e. 450mL "Naked" or small IPA HDPE bottles)
    • Slightly larger HDPE of glass jug for salting (i.e. large IPA or hydrogen peroxide or vinegar HDPE bottles)



Abstract

The extraction portion of this process uses three vessels in which all stages of extraction will cycle through in order to reduce mess, loss of material, and loss of product. The bulk of the process will take place in a single vessel in which pulverization and basification will occur and in a rather automated fashion. Then all material will be transferred to a vessel in which washing, decanting, and filtration of the target solvent will all take place simultaneously. After passing through this vessel, the target solvent will be collected in another vessel. The process of the second and third vessels can then be repeated by pouring the solvent back into the first vessel, then back through the second. If unsatisfied with the results, the material can be transfered back into the first vessel and blended with more reagent.

Rendering product from the extraction involves salting by thoroughly mixing the solvent with acidic water and then separating the layers to collect the water from the bottom and reuse the solvent from the top. The collected solution can then be evaporated with heat and airflow to yield precipitates consisting of salted product and excess acid, which can be purified simply by dissolving the product in water, decanting and evaporating.

The process can take a relatively short amount of time, with the longest waiting periods being the process of preparing MHRB for pulverization, time for solvent to pass through the material, separation of the polar and non-polar layers, and evaporation.


Procedure

  1. Prepare MHRB for pulverization by breaking up by hand or any other method suitable.
  2. Add 100g MHRB to a regular-mouth quart mason jar.
  3. Attach blender blade assembly to the mouth of the jar and pulverize material w/ blender.
  4. Add 50-100g hydrated lime to the jar w/ sufficient amount of water to thoroughly moisten contents.
  5. Add an amount of limonene just short of filling the jar.
  6. Attach blade assembly and blend contents thoroughly until of a doughy consistency.
  7. Prepare THP by cutting the bottom off a 32oz HDPE spray bottle, stuffing cotton balls in the neck loosely, covering the nape of the neck with a few layers of cotton rag, and set the bottle in a clean regular mouth quart jar.
  8. Pour the contents of the blending jar into THP and stir while allowing limonene to pass through into the collection jar.
  9. Continue to pass limonene through THP until satisfied, adding more if necessary.
    • preferrably by pouring the limonene into the original blending jar and using it to wash any remenants into THP
  10. Prepare a saturated solution of a known amount of fumaric acid.
    • referred to as 'FASW', or 'Fumaric Acid Saturated Water'.
  11. Combine FASW with the limonene used for extraction in a glass or HDPE jug and shake vigorously to mix thoroughly.
  12. Allow to separate and for emulsions to settle and pour into a separatory device.
  13. Collect bottom water layer for evaporation and top limonene layer for reuse or recycling.
  14. Evaporate using heat of no more than 120F and sufficient airflow and collect salt and acid precipitates.
    • scraping the product off the dish can be difficult, so it is easier to scrape it into a pile while still wet, then continue to dry.
    • comparison of the total weight to that of the known amount of fumaric acid should indicate amount of freebase product present.
  15. Purify the salted product by dissolving in water and decanting off of excess undissolved fumaric acid and evaporating.
    • the coloration of the decanted solution should indicate the amount of product dissolved.
  16. Collect the dry, solid DMT Fumarate, and handle with care and sincerity.
    • this product contains approximately 76% DMT freebase.


Advantages

  • Nontoxic and wholesome
    • Requires only food-grade materials with little or no potential impact on health or the environment.
  • The use of household equipment and materials
    • All items are readily available on the open market and are commonly found in the home.
  • Minimal material demand
    • Less material to handle and less cost than most other extraction teks, making the process of extraction and disposal of materials much less messy or risky.


Notes Regarding Conversion of Fumarate to Freebase

The process for freebase conversion is much like the process of extraction, but on a smaller scale with simpler equipment and a solvent intended to facilitate crystallization. The common processes used unfortunately do carry a degree of toxicity due to the nature of the solvents in use. However, one less commonly used and reportedly difficult nontoxic method does exist. The following is a brief outline and discussion of these methods.


Drytek Freebase Conversion of DMT Cog.png

This method is by far the easiest and most expedient way to achieve a usable freebase product. Though it is advisable to keep everything completely free of moisture in this process, impurities carried through by moisture are not dangerous and merely effect weight.

  1. Mix DMT fumarate with an equal amount of sodium carbonate and moisten thoroughly.
  2. Allot adequate time and stirring for complete reaction.
  3. Mix in anhydrous magnesium sulfate until material is thoroughly dry.
  4. Add enough anhydrous acetone to completely submerge material and allot adequate time and stirring for dissolution.
  5. Decant acetone into an evaporation dish and evaporate in a dry space, allowing crystal formations to cover most of the dish.
  6. The resulting product will be of a waxy consistency when scraped up.
  7. Continue to pull with acetone until material is apparently exhausted.
  8. Store in a cool, dark place in a sealed container, preferably protected from moisture and oxygen.


Crystalline Freebase Conversion of DMT Cog.png

Though heptane is a bit more toxic and more difficult to evaporate than acetone, it is able to achieve a more pure, hard, crystalline product. The only likely potential impurity--assuming proper decanting--is residual heptane.

  1. Mix DMT fumarate with an equal amount of sodium carbonate and moisten thoroughly.
  2. Allot adequate time and stirring for complete reaction.
  3. Add enough warm heptane to completely submerge material and allot adequate time and stirring for dissolution.
  4. Decant heptane into a small open glass vessel and allow to evaporate with or without airflow.
  5. The resulting product will be crystalline with some leftover oil that may be recycled.
    • acetone works well for recycling uncrystallized product.
  6. Air-dry material thoroughly before storage.
  7. Continue to pull with warm heptane until material is apparently exhausted.
  8. Store in a cool, dark place in a sealed container, preferably protected from moisture and oxygen.


Nontoxic Freebase Conversion of DMT Cog.png

Though completely nontoxic, this method is reportedly difficult for achieving a dry product, as moisture can be difficult to remove.

  1. Dissolve DMT fumarate completely in a small amount of water.
  2. Mix with a saturated solution of sodium carbonate until basic.
  3. Allow time for crystallization to occur.
  4. Collect and dry product thoroughly.
  5. Store in a cool, dark place in a sealed container, preferably protected from moisture and oxygen.



Reference

  1. amor_fati's Nontoxic Experimentation Log[1]