Difference between revisions of "Chilled Acetone with IPA and Naphtha"

From DMT-Nexus Wiki
Jump to: navigation, search
(2 Pull)
(De-polymerization💔)
 
(1,207 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Blind placeholder for CIELO (Chrystals In Ethyl-acetate Leisurely OTC). Information has not been verified.
 
  
== Introduction ==
 
  
In the '''CIELO''' approach, '''C'''rystals are formed directly '''I'''n '''E'''thyl-acetate '''L'''eisurely using '''O'''TC (over the counter) materials.
+
=Introduction 🙏=
 +
Pure DMT free base can form white crystals, yellow powder, and orange to red wax/goo. This wide range of appearance could be due to self aggregation because of indole ring pi bond stacking <ref>Polymer MS evidence[https://www.dmt-nexus.me/forum/default.aspx?g=posts&t=88183]</ref> (see Fig. 1).
  
  
The process is simple: aqueous cactus matter is broken down with microwave radiation, saturated with NaCl, made alkaline, and extracted with ethyl acetate. The extract is dried over MgSO4 and salted with citric acid to precipitate mescaline citrate.
+
This technique (TEK) focuses on maximizing white crystalline DMT by minimizing self aggregation during extraction.
  
== Materials ==
 
  
- Three quart jars with leak-proof ethyl-acetate resistant lids
+
Thanks to benzyme for showing MS evidence of DMT weakly bonding to itself, and to Jees, downwardsfromzero, IridiumAndLace, and Loveall for their contributions to this process in the forum<ref>Minimum Polymer[https://www.dmt-nexus.me/forum/default.aspx?g=posts&t=97103]</ref>.
  
- Food scale to measure weights
 
  
- 100g powdered dry cacti
+
[[File:Dmt copy 800x364.png| center]]
 +
<center>''Fig. 1: Mass spectrum of DMT goo (from benzyme). Peaks in multiples of 188m/z unmask the nature of DMT goo as DMT-DMT bonding aggregation (possibly through indole ring pi stacking).</center>
  
- 80g Ca(OH)2 (lime)
+
= Safety ⛑️=
 +
Review NaOH<ref>NaOH safety[https://www.cdc.gov/niosh/topics/sodium-hydroxide/default.html]</ref> and naphtha <ref>Naphtha safety[https://www.cdc.gov/niosh/npg/npgd0664.html]</ref> safety information. Verify solvent MSDS purity, plastic compatibility, and clean evaporation.
  
- 300g water
 
  
- Microwave
+
Never have solvents near an open flame.
  
- 80g NaCl (plain table salt)
 
  
- 1L ethyl acetate (sometimes labeled "MEK substitute")
+
Following this advice does not guarantee safety. It is up to each adult individual to make their own decision.
  
- pH paper strips
+
=Materials🛒=
 +
==Consumables👩‍🌾==
 +
* 800ml water
 +
* 100g of mimosa hostilis root bark
 +
* 10g ascorbic acid (Vitamin C)
 +
* 50g KCl
 +
* 250ml of '''light''' naphtha/hydrocarbons†
 +
* 25g of NaOH
  
- 20g MgSO4 (oven dehydrated epson salt)
 
  
- Coffee filters
+
†''It is very important to use a source of light hydrocarbons (~8 carbon chains or lower). The smaller organic molecules used in lighter fluids seem to reduce DMT aggregation. Naptha used in paint thinning applications tends to be too heavy (10+ carbon chains). Ronsonol is a good lighter fluid choice available over the counter. Avoid products with anti rust or dyes (e.g. Coleman camping fuel).''
  
- 300mg of Citric acid (~1/16 of a tsp)
+
==Equipment🏺==
 +
* Stovetop
 +
* Pot with lid
 +
* Quart jars
 +
* Scale
 +
* Pipette
 +
* Shallow pyrex baking dish
 +
* Freezer
 +
* Fan
 +
* Scraping tool
  
- Xtal scraping tool (e.g. razor blade)
+
= Process Overview 👀 =
 +
*Cell lysing❄️: In a small pot, freeze/thaw powdered bark and water three times
 +
*De-polymerize💔: Add citric acid together with KCl and brew at 150F for an hour and cool
 +
*Pull👩‍🔬: Add light hydrocarbon solvent, basify with NaOH, shake and pull warm solvent at ~120F. Repeat 5x
 +
*Collect✨: Freeze precipate solvent<sup>†</sup>, decant, dry, and scrape
  
== Safety ==
+
''<sup>†</sup>Evaporation is skipped and max yield is achieved on reused solvent.
  
Ethyl acetate is a natural product in small amounts in some foods and fermented beverages. It is volatile and the smell can be strong. Fume accumulation can be a concern, so work in a well ventilated area and keep lids on as much as possible. The fumes smell sweet and usually dissipate quickly. Read the safety information here, and check your manufacture's MSDS to verify you have ethyl acetate without additives such as methanol. Test all plastic you are planning to use with ethyl acetate and make sure it does not degrade. NEVER pour ethyl acetate down the drain. Not only is solvent in the water an environmental issue, but ethyl acetate can damage PVC pipes. Do not have an open flame anywhere near ethyl acetate. After searching for and reviewing the safety information it is up to you to make an adult personal decision on using ethyl acetate.
+
= Detailed Process 📜=
 +
== Cell Lysing ❄️==
 +
Freeze/thaw bark mixed with 800ml of water in a pot with a lid. Repeat twice for a total of 3 times. Process can be sped up defrosting over low heat.
  
 +
==De-polymerization💔==
 +
Stir in ascorbic acid and KCl. Heat gently to 150F. Cover pot with lid and keep it at this temperature (e.g. using very low heat) for one hour.
  
These are only good-faith safety tips. They do not guarantee safety. Each adult individual needs to make their personal decisions on how/if to use over the counter chemicals.
 
  
== Process ==
+
Ascorbic acid and plant enzymes degrade at high temperatures, especially above 150F-175F. K+ ions are good at disturbing DMT pi bond aggregation in water and superior to Na+ ions.
  
=== 1 Paste ===  
+
== Pull 👩‍🔬==
 +
Transfer treated liquid and bark to a mason quart jar (or another suitable container). Add water if needed so quart jar is close to being full. Shake in ~65ml of light naphtha. Add lye and shake vigorously for a few minutes. Solution will warm up slightly as lye dissolves and will quickly go from red, to milky, to dark red.
  
Slowly add cactus powder to water while stirring to form a homogeneous paste. Microwave at medium power (~500W) in short 2-5 minute bursts monitoring closely to not boil over and stirring between irradiations. Initial paste will liquefy as the plant matter breaks down and then become a paste again after ~100g of water evaporates. Mix in NaCl (paste will become more runny) and cool. Finally, add Ca(OH)2 to thicken the paste and convert mescaline to its free made form. The ideal paste is both stiff and easy to stir. If needed, adjust consistency by adding more brine (runnier) or lime (stiffer).
 
  
=== 2 Pull ===
+
Rest jar in a warm water bath until naphtha layer separates (~10 minutes, see Fig. 3). If separation is not complete after 30 minutes, mix in another 5g of lye and try again.
  
Add ~ 400g of ethyl acetate (fill the jar about 3/4 full). Extract for a few hours shaking vigorously every once in a while*. Decant solvent into second jar. About ~ 150g of solvent will remain in to the paste (the pulls are still very efficient despite this). Pull two more times with ~250g ethyl acetate (simply aim to fill the jar to ~3/4 like before). Combined pulls will give about ~750g (~0.9 quarts) of a clear yellow extract. Use pH paper to monitor extraction: green color indicates mescaline presence. By the third pull there should be very little visible green on the pH paper (if any).
 
  
 +
Move naphtha into a pint jar with a pipette It is ok if a few drops of watery extract or bark particles come through (they will be decanted in the next section).
  
'''*Troubleshooting:'''
 
  
It is important to get the paste consistentcy right. If it is too watery, ethyl acetate will be completely absorbed by the paste and not separate. If it is too dry, it will be hard to mix and the pull won't be as efficient. Plant material is variable making water measurements a first order approximation, therefore, getting a feel for the paste will make the process more reliable with experience. Fortunately, it is possible to make some adjustments while pulling if needed:
+
Add another ~65ml of naphtha to the quart jar. Shake for a few minutes, rest in a warm water bath until layers separate, and pipette naphtha into the pint jar. Perform this step two more times (total of 4 pulls, including the first one).
  
- Too watery: Adding lime will break up the blob and cloudy release solvent. The cloudiness clears up over time.
 
  
- Too dry: Simply add water a few ml at a time until paste is easy to mix. This can sometimes occur in the later pulls, especially with anhydrous solvent.
+
Ideally, all four pulls are done within an hour while the quart jar is slightly warm from the lye dissolving in water.
  
=== 3 Dry ===
 
  
Add anhydrous MgSO4 to the ethyl acetate extract and swirl well. After at least an hour filter to a new jar. Rinse MgSO4 with ~25ml of fresh ethyl acetate and combine that with the dried extract.
+
[[File:IMG 20211020 090639578 copy 600x1122 copy 427x800.jpg|center]]
 +
<center>''Fig. 3: Settled naphtha pull ready to be pipetted.</center>
  
=== 4 Salt ===  
+
== Crystalize ✨==
 +
Carefully decant naphtha pulls to a new fresh pint jar. Do not allow any watery extract or particles to come through.
  
Gently drop citric acid powder into the extract without stirring. Clouds slowly form as the citric acid dissolves by diffusion and eventually settle as beautiful citrate xtals.
 
  
Stirring after adding citric acid won't cause any major issues, but xtals will be smaller. Conversely, adding only 50mg of citric first forms seed xtals, from which larger xtals grow with subsequent citric acid addition(s).
+
Place naphtha in freezer to precipitate crystals<sup>†</sup>. Rest in freezer until cloudiness clears (at least 24 hours).
  
As with the pulls, progress in this step can be monitored with pH paper. Color will go from green (alkaline free base present) to orange (salting is complete) to red (excess citric acid in solution). Orange is the target, but no issues are known if over acidifying as long as solvent is not oversaturated with a large amount of citric acid. Every 10mg of citric acid ('''CH<sub>3</sub>''') reacts with enough free base mescaline ('''M''') to precipitate up to 43mg of mescaline citrate:
 
  
'''<span style="color: Orange"> <div style="text-align: center;">3M<sub>()</sub> + CH<sub>3()</sub> ⇒ 3(MH)C<sub>(↓)</sub></div></span>'''
+
Decant naphtha off crystals, and immediately dry with the help of a fan.  Once dry, dissolve xtals in a minimal amount of boiling fresh naphtha (~25ml) for 15 minutes, pout into a shallow baking dish, evaporate slowly (no fan), and scrape. This is the final product. Yields are typically 1 to 3%.
  
=== 5 Finish ===
 
  
Pour off ethyl acetate into a storage container (solvent can be washed with brine and reused). Use a coffee filter to help pick up any loose xtals. Rinse xtals in both the jar and filter with fresh dry ethyl acetate until yellow color is removed to personal cosmetic satisfaction. Scrape up xtals, and leave them uncovered to evaporate all residual solvent, this is the final product.
+
''<sup>†</sup>If new naphtha was used, one option is to evaporate the solvent until slightly cloudy with the help of a fan in a well ventilated area. A better option is to skip the solvent evaporation. Yield will be lower by ~500mg if using new naphtha, but it will be available for reuse as a one-time "investment" for the next extraction. Subsequently, used naphtha does not need to be evaporated before freezing to get the full yield since it already comes preloaded with a DMT concentration that is saturated at the freezer's temperature.''
  
 +
== Reclaim Solvent 💚==
 +
Reusing solvents is encouraged<ref>On reusing non polar solvent[https://www.dmt-nexus.me/forum/default.aspx?g=posts&t=31398]</ref> at the DMT nexus.
  
Mass spec results are current pending. Hopefully they will show the product is mescaline citrate within measurement sensitivity (already >98% pure) even when not completely white after two rinses. Yields are highly dependent on starting cacti powder and can vary from 0.1% to 5% (0.5% to 1% being common).
 
  
== References ==
+
Simply reuse freeze precipitated naphtha as-is. Re-used naphtha is saturated with DMT at freezer the temperature (~2mg/ml) and pre-freezer evaporation is not needed. Easy 😊
 +
 
 +
= Frequently Asked Questions ❓ =
 +
'''Q: That's a lot of hypothesis you got down in the appendix. Have any experimental evidence consistent with them?'''
 +
 
 +
A: Yes. Benzyme's MS, together with polymerization and de-polymerization experiments. As far as we know experiments are consistent with the hypotheses listed. The community is welcome to update this Wiki entry as more evidence arises, especially if any of the hypotheses are disproved (thank you).
 +
 
 +
 
 +
'''Q: What's so special about Vitamin C?'''
 +
 
 +
A: See the development notes in appendix below.
 +
 
 +
 
 +
'''Q: Why are there only 3 pulls without a warm water bath or salting out ionic strength? Usually ~5 warm (40-50C) + high ionic strength pulls (~6% NaCl) are needed.'''
 +
 
 +
A: DMT monomer is highly soluble in naphtha and has an excellent partition coefficient. By converting natural DMT to this form, and keeping alkaline conditions gentle to avoid polymerization, the pulls are simpler and very efficient. No added heat or ionic strength is necessary.
 +
 
 +
 
 +
'''Q: What is the difference between DMT polymers, oligomers, aggregates, and aromatic pi-pi stacking?'''
 +
 
 +
A: None, all names are equivalent and refer to the same thing: weakly bonded groups of DMT molecules that form goo instead of crystals.
 +
 
 +
= Appendix: Development Notes 🔬=
 +
== Hypotheses 🤔==
 +
This TEK hypothesizes that:
 +
 
 +
 
 +
*Not all of the DMT is in the plant in monomer form, some of it is in macro-molecule form (also called polymer, oligomer, or goo)
 +
*In addition to natural DMT polymer, even more polymer can form during the basing step under high alkaline, high ionic strength, and high DMT concentration conditions
 +
*Once natural DMT polymer is broken down, gentle alkaline conditions keep it from forming again
 +
*Goo can also form in the solvent. Using lighter naphtha (shorter carbon chains) minimizes DMT goo formation.
 +
*DMT monomer properties compared to DMT polymer:
 +
**Easier to dissolve in naphtha (better partition coefficient)
 +
**Barely clouds during naphtha evaporation
 +
**Slowly crashes during freeze precipitation as white crystals. In contrast, DMT polymer precipitates sooner as yellow/orange/red semisolid goo
 +
**Easier to handle and dose precisely
 +
**Low and consistent vaporization temperature, ideal for newer electronic vaporization devices with precisely tuned temperature settings
 +
**Visibly unique upon crystalization, eliminating questions around plant oil contaminants
 +
**May be easier to complex with HPBCD for sublingual administration
 +
**It is unknown if it has better bioavailability for oral or rectal administration. In principle, stomach acid should be able to break down DMT polymer, so perhaps there is no difference for oral administration
 +
**There is no expected benefit for torch vaporization by an experienced user since the strong heat produced manually can easily vaporize everything. However, the process window between vaporizing and burning the DMT is larger for the monomer which may benefit the inexperienced user
 +
 
 +
==Strategy ♟️==
 +
The strategy of this minimum polymer TEK is to break down both natural DMT aggregates during the acid step and minimize DMT aggregation during the basing and pulling steps.
 +
 
 +
 
 +
Aggressive alkaline concentration conditions are avoided. While these type of processes can break down plant material, their downside is that they don't break down natural DMT aggregates and can even increase the degree of polymerization.
 +
 
 +
 
 +
Fortunately, DMT aggregates can break down in acidic conditions. Therefore, to simultaneously break down DMT aggregates and plant material, a long acidic pressure cooking step is used (described before by for example Northener). Vitamin C is used to complete de-aggregation due to its good experimental performance and some literature references referring to it's ability to disrupt pi-pi bonds<ref>Uric acid de-aggregation by vitamin C[https://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp01504d/unauth]</ref>, but other acids could also work. Subsequently, relatively gentle ionic strength (no added salt), gentle alkaline pH (no excess lye beyond emulsion breakdown), and low DMT concentration (<0.5%) conditions are used to minimize any DMT re-polymerization. Naphtha is introduced before basing to minimize the time bulk DMT spends in alkaline water.
 +
 
 +
== Vitamin C 🍊==
 +
Experimentally, Vitamin C produced better results compared to acetic and citric acids. Vitamin C is biologically active as a mild antioxidant and reducing agent and can pass through cell membranes.
 +
 
 +
 
 +
Vitamin C begins to degrade at 158F. The activity of vitamin C decreases with temperature, so it is added when the extract is still hot yet below this degradation temperature.
 +
 
 +
 
 +
A possible specific mechanism of action is that as a strong electron donor,  vitamin C disrupts parallel displaced aromatic ring pi-bond stacking conformations<ref>Pi-bond aromatic stacking[https://en.m.wikipedia.org/wiki/Pi-Stacking_(chemistry)]</ref><ref>Tryptophan parallel displaced stacking[https://www.jbc.org/article/S0021-9258(18)80815-8/fulltext]</ref>.
 +
 
 +
 
 +
Other acids may also work, and the kitchen alchemist is encouraged to report on any new experimental results (both positive and negative).
 +
 
 +
== Cloudiness 🌫️==
 +
DMT monomer does not readily form clouds in naphtha compared to other extractions that do not minimize polymer. In this TEK clouds form later in the freezer or evaporation process and are not as opaque. Late cloud formation is a good sign and not a cause for concern. Monomer crystals take longer to grow in the freezer, so give them extra time.
 +
 
 +
= References 🗝️=
 
<references/>
 
<references/>

Latest revision as of 13:22, 11 July 2022


Introduction 🙏

Pure DMT free base can form white crystals, yellow powder, and orange to red wax/goo. This wide range of appearance could be due to self aggregation because of indole ring pi bond stacking [1] (see Fig. 1).


This technique (TEK) focuses on maximizing white crystalline DMT by minimizing self aggregation during extraction.


Thanks to benzyme for showing MS evidence of DMT weakly bonding to itself, and to Jees, downwardsfromzero, IridiumAndLace, and Loveall for their contributions to this process in the forum[2].


Dmt copy 800x364.png
Fig. 1: Mass spectrum of DMT goo (from benzyme). Peaks in multiples of 188m/z unmask the nature of DMT goo as DMT-DMT bonding aggregation (possibly through indole ring pi stacking).

Safety ⛑️

Review NaOH[3] and naphtha [4] safety information. Verify solvent MSDS purity, plastic compatibility, and clean evaporation.


Never have solvents near an open flame.


Following this advice does not guarantee safety. It is up to each adult individual to make their own decision.

Materials🛒

Consumables👩‍🌾

  • 800ml water
  • 100g of mimosa hostilis root bark
  • 10g ascorbic acid (Vitamin C)
  • 50g KCl
  • 250ml of light naphtha/hydrocarbons†
  • 25g of NaOH


It is very important to use a source of light hydrocarbons (~8 carbon chains or lower). The smaller organic molecules used in lighter fluids seem to reduce DMT aggregation. Naptha used in paint thinning applications tends to be too heavy (10+ carbon chains). Ronsonol is a good lighter fluid choice available over the counter. Avoid products with anti rust or dyes (e.g. Coleman camping fuel).

Equipment🏺

  • Stovetop
  • Pot with lid
  • Quart jars
  • Scale
  • Pipette
  • Shallow pyrex baking dish
  • Freezer
  • Fan
  • Scraping tool

Process Overview 👀

  • Cell lysing❄️: In a small pot, freeze/thaw powdered bark and water three times
  • De-polymerize💔: Add citric acid together with KCl and brew at 150F for an hour and cool
  • Pull👩‍🔬: Add light hydrocarbon solvent, basify with NaOH, shake and pull warm solvent at ~120F. Repeat 5x
  • Collect✨: Freeze precipate solvent, decant, dry, and scrape

Evaporation is skipped and max yield is achieved on reused solvent.

Detailed Process 📜

Cell Lysing ❄️

Freeze/thaw bark mixed with 800ml of water in a pot with a lid. Repeat twice for a total of 3 times. Process can be sped up defrosting over low heat.

De-polymerization💔

Stir in ascorbic acid and KCl. Heat gently to 150F. Cover pot with lid and keep it at this temperature (e.g. using very low heat) for one hour.


Ascorbic acid and plant enzymes degrade at high temperatures, especially above 150F-175F. K+ ions are good at disturbing DMT pi bond aggregation in water and superior to Na+ ions.

Pull 👩‍🔬

Transfer treated liquid and bark to a mason quart jar (or another suitable container). Add water if needed so quart jar is close to being full. Shake in ~65ml of light naphtha. Add lye and shake vigorously for a few minutes. Solution will warm up slightly as lye dissolves and will quickly go from red, to milky, to dark red.


Rest jar in a warm water bath until naphtha layer separates (~10 minutes, see Fig. 3). If separation is not complete after 30 minutes, mix in another 5g of lye and try again.


Move naphtha into a pint jar with a pipette It is ok if a few drops of watery extract or bark particles come through (they will be decanted in the next section).


Add another ~65ml of naphtha to the quart jar. Shake for a few minutes, rest in a warm water bath until layers separate, and pipette naphtha into the pint jar. Perform this step two more times (total of 4 pulls, including the first one).


Ideally, all four pulls are done within an hour while the quart jar is slightly warm from the lye dissolving in water.


IMG 20211020 090639578 copy 600x1122 copy 427x800.jpg
Fig. 3: Settled naphtha pull ready to be pipetted.

Crystalize ✨

Carefully decant naphtha pulls to a new fresh pint jar. Do not allow any watery extract or particles to come through.


Place naphtha in freezer to precipitate crystals. Rest in freezer until cloudiness clears (at least 24 hours).


Decant naphtha off crystals, and immediately dry with the help of a fan. Once dry, dissolve xtals in a minimal amount of boiling fresh naphtha (~25ml) for 15 minutes, pout into a shallow baking dish, evaporate slowly (no fan), and scrape. This is the final product. Yields are typically 1 to 3%.


If new naphtha was used, one option is to evaporate the solvent until slightly cloudy with the help of a fan in a well ventilated area. A better option is to skip the solvent evaporation. Yield will be lower by ~500mg if using new naphtha, but it will be available for reuse as a one-time "investment" for the next extraction. Subsequently, used naphtha does not need to be evaporated before freezing to get the full yield since it already comes preloaded with a DMT concentration that is saturated at the freezer's temperature.

Reclaim Solvent 💚

Reusing solvents is encouraged[5] at the DMT nexus.


Simply reuse freeze precipitated naphtha as-is. Re-used naphtha is saturated with DMT at freezer the temperature (~2mg/ml) and pre-freezer evaporation is not needed. Easy 😊

Frequently Asked Questions ❓

Q: That's a lot of hypothesis you got down in the appendix. Have any experimental evidence consistent with them?

A: Yes. Benzyme's MS, together with polymerization and de-polymerization experiments. As far as we know experiments are consistent with the hypotheses listed. The community is welcome to update this Wiki entry as more evidence arises, especially if any of the hypotheses are disproved (thank you).


Q: What's so special about Vitamin C?

A: See the development notes in appendix below.


Q: Why are there only 3 pulls without a warm water bath or salting out ionic strength? Usually ~5 warm (40-50C) + high ionic strength pulls (~6% NaCl) are needed.

A: DMT monomer is highly soluble in naphtha and has an excellent partition coefficient. By converting natural DMT to this form, and keeping alkaline conditions gentle to avoid polymerization, the pulls are simpler and very efficient. No added heat or ionic strength is necessary.


Q: What is the difference between DMT polymers, oligomers, aggregates, and aromatic pi-pi stacking?

A: None, all names are equivalent and refer to the same thing: weakly bonded groups of DMT molecules that form goo instead of crystals.

Appendix: Development Notes 🔬

Hypotheses 🤔

This TEK hypothesizes that:


  • Not all of the DMT is in the plant in monomer form, some of it is in macro-molecule form (also called polymer, oligomer, or goo)
  • In addition to natural DMT polymer, even more polymer can form during the basing step under high alkaline, high ionic strength, and high DMT concentration conditions
  • Once natural DMT polymer is broken down, gentle alkaline conditions keep it from forming again
  • Goo can also form in the solvent. Using lighter naphtha (shorter carbon chains) minimizes DMT goo formation.
  • DMT monomer properties compared to DMT polymer:
    • Easier to dissolve in naphtha (better partition coefficient)
    • Barely clouds during naphtha evaporation
    • Slowly crashes during freeze precipitation as white crystals. In contrast, DMT polymer precipitates sooner as yellow/orange/red semisolid goo
    • Easier to handle and dose precisely
    • Low and consistent vaporization temperature, ideal for newer electronic vaporization devices with precisely tuned temperature settings
    • Visibly unique upon crystalization, eliminating questions around plant oil contaminants
    • May be easier to complex with HPBCD for sublingual administration
    • It is unknown if it has better bioavailability for oral or rectal administration. In principle, stomach acid should be able to break down DMT polymer, so perhaps there is no difference for oral administration
    • There is no expected benefit for torch vaporization by an experienced user since the strong heat produced manually can easily vaporize everything. However, the process window between vaporizing and burning the DMT is larger for the monomer which may benefit the inexperienced user

Strategy ♟️

The strategy of this minimum polymer TEK is to break down both natural DMT aggregates during the acid step and minimize DMT aggregation during the basing and pulling steps.


Aggressive alkaline concentration conditions are avoided. While these type of processes can break down plant material, their downside is that they don't break down natural DMT aggregates and can even increase the degree of polymerization.


Fortunately, DMT aggregates can break down in acidic conditions. Therefore, to simultaneously break down DMT aggregates and plant material, a long acidic pressure cooking step is used (described before by for example Northener). Vitamin C is used to complete de-aggregation due to its good experimental performance and some literature references referring to it's ability to disrupt pi-pi bonds[6], but other acids could also work. Subsequently, relatively gentle ionic strength (no added salt), gentle alkaline pH (no excess lye beyond emulsion breakdown), and low DMT concentration (<0.5%) conditions are used to minimize any DMT re-polymerization. Naphtha is introduced before basing to minimize the time bulk DMT spends in alkaline water.

Vitamin C 🍊

Experimentally, Vitamin C produced better results compared to acetic and citric acids. Vitamin C is biologically active as a mild antioxidant and reducing agent and can pass through cell membranes.


Vitamin C begins to degrade at 158F. The activity of vitamin C decreases with temperature, so it is added when the extract is still hot yet below this degradation temperature.


A possible specific mechanism of action is that as a strong electron donor, vitamin C disrupts parallel displaced aromatic ring pi-bond stacking conformations[7][8].


Other acids may also work, and the kitchen alchemist is encouraged to report on any new experimental results (both positive and negative).

Cloudiness 🌫️

DMT monomer does not readily form clouds in naphtha compared to other extractions that do not minimize polymer. In this TEK clouds form later in the freezer or evaporation process and are not as opaque. Late cloud formation is a good sign and not a cause for concern. Monomer crystals take longer to grow in the freezer, so give them extra time.

References 🗝️

  1. Polymer MS evidence[1]
  2. Minimum Polymer[2]
  3. NaOH safety[3]
  4. Naphtha safety[4]
  5. On reusing non polar solvent[5]
  6. Uric acid de-aggregation by vitamin C[6]
  7. Pi-bond aromatic stacking[7]
  8. Tryptophan parallel displaced stacking[8]